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Abstract

We develop a new effectively adaptive, general purpose MCMC for arbitrary continuous

distributions and correlation structure. We call this MCMC the t-walk. The t-walk maintains

two independent points in the sample space, and all moves are based on proposals that are

then accepted with a standard Metropolis-Hastings acceptance probability on the product

space. Hence the t-walk may be viewed as an adaptive MCMC sampler that maintains a

set of two points in the state space and moves them with some structure. However the t-

walk is strictly not adaptive on the product space, but does display beneficial self-adjusting

behavior on the original state space. Four proposal distributions, or ‘moves’, are given resulting

in an algorithm which is effective in sampling distributions of arbitrary scale, without the

requirement for further tuning of parameters. Several examples are presented showing good

mixing and convergence characteristics, varying in dimensions from 1 to 200 and with radically

different scale and correlation structure, using exactly the same sampler.
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1 INTRODUCTION

We develop a new MCMC sampling algorithm that contains neither adaptivity nor tuning param-

eters yet that can adapt to target distributions with arbitrary scale and correlation structure. We

dub this algorithm the “t-walk” (since moves are designed to traverse the state space, in a thought-

ful way). Because the t-walk is constructed as a Metropolis-Hastings algorithm on the product

space it is provably convergent under the usual mild conditions.

Application areas are in sampling continuous densities with arbitrary scale and correlation

structure. In applications where a change of variables will be applied to improve sampling from

distributions with correlation, the t-walk will sample with adequate efficiency in most cases. Indeed,

because the t-walk is not actually adaptive, it can efficiently sample from distributions that have

local correlation structure that differs in different parts of state space. On the original state space

the step size and direction appear to adapt continuously to the local structure. Hence the t-walk is

excellent for initial exploration as it overcomes the need to tune proposals for scale and correlation,

which is typically the first difficulty encountered when learning MCMC methods. We expect that

for a large number of problems the t-walk will allow sufficiently efficient sampling of the target

distribution that no recourse to further algorithm development is required.

There is an increasing interest in using Bayesian methods in a number of scientific and engi-

neering applications that may require the use of sophisticated sampling methods such as MCMC

(see Firmani, Avila-Reese, Ghisellini, and Ghirlanda, 2007, Jeffery, von Hippel, Jefferys, Winget,

Stein and DeGennaro, 2007, Bavencoff, Vanpeperstraete and Le Cadre, 2006, Symonds, Reavell,

Olfert, Campbell and Swift, 2007, Emery, Valenti and Bardot, 2007, just to mention some very

recent examples). Therefore, developing a generic, adaptable and easy to use MCMC methods like

the t-walk will help non-statisticians who are looking to use Bayesian inferential methods in their

field of work.

Because the t-walk is useful as a black-box sampling algorithm it potentially allows researchers

to focus on data analysis rather than MCMC algorithms. Even though it may be not quite as

efficient as a well-tuned algorithm, its use reduces time from problem specification to data analysis
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in one off research jobs, since the only input required is the log of the target distribution and

two initial points in the parameter space. Also, the t-walk will prove useful in multiple data

analyses where details of the posterior distribution depend sufficiently on a particular data set

that adjustment would be required to the proposal in a standard Metropolis-Hastings algorithm,

allowing for automatic use of MCMC sampling.

We show that the t-walk performs well with several examples of dimension from one to 200.

Good results are obtained, always simulating from the objective function successfully for all ex-

amples that range across different scales and dimensions.

A review of adaptive MCMC algorithms was given by Warnes (2000, chap 1) who classified

adaptive algorithms under two broad groups as follows. Those MCMC samplers that aim at

updating tuning parameters using information of the chain and/or of the objective function (see,

for example, Gilks, Roberts and Sahu, 1998, Brockwell and Kadene, 2005, Haario, Saksman and

Tamminen, 2001), and the adaptive direction samplers (ADS) that maintain several points in the

state space (see, for example, Gilks, Roberts and George, 1994, Gilks and Roberts, 1996, Eidsvik

and Tjelmeland, 2004, or the “evolutionary Monte Carlo” that combines ADS with moves from

genetic algorithms to speed up a Metropolis coupled MC in Liang and Wong, 2001). However,

we have not found successful applications of these MCMC schemes to a comprehensive suite of

objective functions. Most require specific mathematical calculations to be made for each objective

function and in many cases the regularity conditions for convergence are complex. In contrast,

the t-walk has mild convergence requirements since it mixes a set of standard Metropolis-Hastings

kernels, and only requires evaluation of the target density.

The paper is structured as follows: in Section 2 we explain the t-walk and establish its ergodic

properties (based on standard results for M-H algorithms). In Section 3.1 we present several two

dimensional examples and in Section 3.2 we present a more complex example involving a mixture

of normals. Finally a discussion of the paper may be found in Section 5.
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2 THE T-WALK DESIGN

For an objective function (posterior distribution, etc.) π(x), x ∈ X (X has dimension n and is

a subset of Rn), we form the new objective function f(x, x′) = π(x)π(x′) on the corresponding

product space X × X . While a general proposal has the form

q{(y, y′) | (x, x′)},

we consider the two restricted proposals

(y, y′) =


(x, h(x′, x)), with prob. 0.5

(h(x, x′), x′), with prob. 0.5

(1)

where h(x, x′) is a random variable used to form the proposal. That is, we change only one of x

or x′ in each step.

Within a Metropolis-Hastings scheme, we need to calculate the corresponding acceptance ratio.

Denoting the density function of h(x, x′) by g(· | x, x′), the ratio is equal to

π(y′)
π(x′)

g(x′ | y′, x)
g(y′ | x′, x)

for the first case in equations 1 and

π(y)
π(x)

g(x | y, x′)
g(y | x, x′)

for the second case. In all four of the moves below we simulate φj ∼ Be(p); j = 1, 2, . . . , n

independently. If φj coordinate j is not updated. p is choosen so as np ≤ 5. At each iteration we

let nφ =
∑n

j=1 φj .

We have found that the following four choices for h give adequate mixing across a wide range

of target distributions.

2.1 Walk move

In many applications, particularly with weak correlations, we find that mixing of the chain is

primarily achieved by a scaled random walk that we refer to as the walk move.
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The walk move is defined by the function

hw(x, x′)j = xj + φj

(
xj − x′j

)
zj

for j = 1, 2, . . . , n, where zj ∈ R are i.i.d. r.v. with density ψw(·). This proposal is symmetric

when

ψw

(
−z

1 + z

)
= (1 + z)ψw(z).

We achieve this by setting

ψw(z) =


1

k
√

1 + z
, z ∈

[
−a

1 + a
, a

]
0, otherwise,

for any a > 0, with normalizing constant k = 2
(√

1 + a− 1/
√

1 + a
)
. This density is simple to

simulate using the inverse cumulative distribution as

z =
a

1 + a

(
−1 + 2u+ au2

)
where u ∼ U(0, 1). We set a = 1/2 in our implementation of the t-walk. Consequently, the

Hastings ratio for the second case is

gw(x | y, x′)
gw(y | x, x′)

= 1,

and similarly for the first case. Hence the acceptance probability is simply given by the ratio of

target densities.

2.2 Traverse move

A typical difficulty experienced by samplers using random walk moves is with densities with strong

correlation between a few, or several, variables. A typical solution is to rotate coordinates of the

state variables or, equivalently, the proposal distributions. However, that is not feasible with

distributions where the correlation structure changes through state space. (An example of such a

distribution may be found in Figure 3(b).)
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For those applications, efficiency of the sampler is greatly enhanced by the ‘traverse move’

defined by

ht(x, x′) =


x′ + β(x′ − x) φj = 1

x φj = 0.

where β ∈ R+ is a r.v. with density ψt(·).

The case β ≡ 0 is similar as Skilling’s leap-frog move (see MacKay, 2003, sec. 30.4) restricted

to two states and a subset of coordinates. Since the t-walk maintains just two states, the traverse

move does not have the random selection of states as in the leap-frog move. As noted by MacKay

(2003, p. 394), this move has similarities to the ‘snooker’ move used in ADS’s. The traverse move

is therefore much simpler than either leap-frog or snooker, and like the leapfrog move, is more

widely applicable than the snooker move since calculation of conditional densities is not required.

Since just one random number is used in this proposal, except for the case β ≡ 1, it is not

possible to make both the proposal and the acceptance ratio independent of the dimension of state

space, n. However, by setting ψt(1/β) = ψt(β), for all β > 0, the ratio of propolsals is simplified

to βnφ−2, see below. A density of this kind may be obtained by using a density φ(·) on R+ and

defining ψt(β) = K{φ(β−1−1)I(0,1](β)+φ(β−1)I(1,∞)(β)}, for a normalizing constant K (we need∫ 1

0
φ(β−1 − 1)dβ <∞). A simple and convenient result is obtained with φ(y) = (a− 1)(y + 1)−a,

for any a > 1, in which case

ψt(β) =
a− 1
2a

{(a+ 1)βaI(0,1](β)}+
a+ 1
2a

{(a− 1)β−aI(1,∞](β)},

which is a mixture of two distributions and may be easily sampled from with the following algorithm

β =


u

1
a+ 1 , with prob.

a− 1
2a

u

1
1− a , with prob.

a+ 1
2a

,

(2)

where u ∼ U(0, 1). We want steps to be taken around the length of ||x − x′||, thus we state that

P (β < 2) ≈ 0.9. This is achieved with a = 4 giving P (β < 2) ≈ 0.92. A plot of ψt(β) with a = 4

is presented in Figure 1. Following the above transformation, it is clear that

gt(y | x, x′) = f

(
||y − x′||
||x− x′||

)
||x− x′||−1.
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Figure 1: ψt(β) with a = 4 giving P (β < 2) ≈ 0.92.

A note of caution is prudent here, regarding calculation of the acceptance probability for this move.

Since the range of h is a subspace of X it is most convenient to use the reversible jump MCMC

formalism (see Green and Mira, 2001) for evaluating the acceptance ratio The corresponding

Jacobian determinant equals βnφ−2, and since ψt(1/β) = ψt(β) the acceptance ratio is
π(y′)
π(x′)

βnφ−2

or
π(y)
π(x)

βnφ−2, for the first and second cases, respectively.

The discussion in MacKay (2003) of why Skilling’s leapfrog method works largely applies to the

traverse move. In particular example 30.3 of MacKay (2003) and its solution, shows that applying

these moves to a Gaussian distribution in n dimensions with covariance matrix proportional to

the identity results in an expected acceptance ratio of e−2n. Hence this move has a very low

acceptance ratio for large number of uncorrelated variables. However when many variables are

strongly correlated the effective value of n decreases, giving good mixing for such distributions,

as intended. In examples with correlation as high as 1 − 10−7 (typical of examples from inverse

problems) the traverse move is effective in mixing along the long axis of the distribution, but is

very slow in mixing in directions perpendicular to the long axis. Then combining the traverse

move with the other moves in the t-walk results in an effective sampling algorithm.
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2.3 Hop and Blow moves

The walk and traverse moves are not, by themselves, enough to guarantee irreducibility of the

chain over arbitrary target distributions. It is therefore necessary to introduce further moves to

ensure this. Further, both the walk and traverse moves can lead to extremely slow mixing for

distributions with very high correlation (say 0.9999 or higher), as mentioned above. We find that

these difficulties are cured by employing two further moves that make bold proposals, but are

chosen with relatively low probability (see below). We call these moves the hop and blow moves.

We have at least one bimodal example in which switching between modes is improved substantially

by choosing the hop and blow moves 10% of the time.

A hop move is defined by the choice for h;

hh(x, x′) = (xj + φjzjσ(x, x′)/3)

with zj ∼ N(0, 1), where σ(x, x′) = maxj=1,2,...,n φj |xj − x′j |. We call this the hop move. For this

proposal

gh(y | x, x′) =
(2π)−nφ/23nφ

σ(x, x′)nφ
exp

− 9
2σ(x, x′)2

n∑
j=1

(yj − xj)2

 .

Note that this move is centred at x.

Finally we consider the blow move defined by

hb(x, x′)j =


x′j + σ(x, x′)zj φj = 1

xj φj = 0,

with zj ∼ N(0, 1). We thus have

gb(y | x, x′) =
(2π)−nφ/2

σ(x, x′)nφ
exp

− 1
2σ(x, x′)2

n∑
j=1

(yj − x′j)
2

 .

Note that, as opposed to the walk and hop moves above, this move is centred at x′.

2.4 Convergence

Let Kα(·, ·) be the corresponding M-H transition kernel for proposal qα, where α ∈ {w, t,h,b}.

(There is a positive probability of obtaining nφ and this ensures strong aperiodicity.) It may be
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seen, using the properties of the M-H method, that each Kα also satisfies detailed balance with

f(x, x′). We form the transition kernel:

K{(x, x′), (y, y′)} =
∑

α∈{w,t,h,b}

wαKα{(y, y′) | (x, x′)},

where
∑

α wα = 1, which consequently also satisfies the detailed balance condition with f . As-

suming that also K is f -irreducible (note that hop and blow moves ensure f -irreducibility), then

f is the limit distribution of K (see Robert and Casella, 1999, chapter 6, for details).

In our implementation of the t-walk we set the move probabilities ww, wt, wh, wb = 0.4918, 0.4918, 0.0082, 0.0082.

These values were chosen to give the minimum integrated autocorrelation time, i.e. roughly the

number of iterations per independent sample, across the two-dimensional bi-modal examples pre-

sented later in Section 3. Interestingly, these values were close to optimal for each of the example

target distributions considered, and little compromise was required.

2.5 Properties

The following theorem states that the t-walk is invariant to changes in scale and reference point.

Theorem 1 Given a transformation of the space X , φ(x) = ax + b, where a ∈ R, a 6= 0 and

b ∈ Rn, that generates the new objective function λ(z) = |a−n|π(φ−1(z)), one may generate a

realization of the t-walk either by applying the t-walk kernel with λ as objective function, with

starting values z0, z′0, or by applying the t-walk kernel to π, with starting values φ−1(z0), φ−1(z′0),

and then transforming the resulting chain with φ.

Proof: Let V0 = (φ−1(z0), φ−1(z′0)) and W1 ∈ φ(X ) × φ(X ). Elementary calculations lead to the

fact that |a−n|qα(φ−1(W1) | V0) = qα(W1 | φ(V0)) for α = w, t, b, h. Using this it is easy to see for

the M-H acceptance probabilities, using π and λ, that ρπ
hj

(V0, φ
−1(W1)) = ρλ

hj
(φ(V0),W1). It is

clear then that ρπ
hj

(V0, φ
−1(W1))|a−n|qhj

(φ−1(W1) | V0) = ρλ
hj

(φ(V0),W1)qhj
(W1 | φ(V0)). This,

together with the fact that the probability of not jumping in either case is the same, 1−rλ
hj

(φ(V0)) =

1− rπ
hj

(V0), establishes the result (see Robert and Casella, 1999, p. 235 for similar notation). •
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What we have just proved is that applying the t-walk kernel with π and transforming it with

φ has density |a−n|qhj
(φ−1(W1) | V0) + δV0(W1){1− rλ

hj
[φ(V0)]} which is equal to Kλ(φ(V0),W1).

It is immediate that this also holds for n steps into the t-walk and therefore, for any set B (of the

transformed space) Kn
π (V0, φ

−1(B)) = Kn
λ (φ(V0), B) and since also fπ(φ−1(B)) = fλ(B) we have

that

||Kn
π (V0, ·)− fπ(·)||TV = ||Kn

λ (φ(V0), ·)− fλ(·)||TV ,

where fπ(A) =
∫

A
π(dx)π(dx′) and fλ(B) =

∫
B
λ(dx)λ(dx′).

The above establishes a powerful characteristic of the t-walk; its performance (speed of con-

vergence, autocorrelations, etc) remain unchanged with a change in scale and position as given by

φ. Moreover, if the t-walk is limited to moves the traverse and walk moves, the theorem remains

valid even if we use a more general change in scale using a = diag(aj), a diagonal matrix, with

aj ∈ R, aj 6= 0. Furthermore, the traverse move is invariant when a is any nonsingular matrix.

Although the t-walk contains random walk type updates, it may not be reduced solely to a

random walk MCMC in the usual sense. Since xn and x′n both have π(·) as limit distribution,

then ||xn−x′n|| is a property of π and in the limit has the distribution of the distance between two

points sampled independently from π. Hence the “step size” (in some loose sense) cannot actually

be manipulated or designed in any way. However, when viewed as a sampler on the original space,

the step size appears to adapt to the characteristics of shape and size of the section of π that is

being analyzed.

3 NUMERICAL EXAMPLES

3.1 2-dimensional examples

We present some simple examples with two parameters. First we experiment with a bimodal,

correlated, objective function that has the form

h(x) = K exp

{
−τ

(
2∑

i=1

(xi −m1i)2
)(

2∑
i=1

(xi −m2i)2
)}

, (3)
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Figure 2: Sample paths for one component in the t-walk. Upper left quadrant: Bivariate normal

distribution with correlation 0.95. Other quadrants, counterclockwise from the lower left: distribu-

tion in (3) with τ = 0.01, 0.1, 0.001, 1000 (for τ = 1000 the scale is such that the distribution shape

can not be distinguished and is reduced to a point). In all cases we had an acceptance ratio of 40

to 50%, the starting points where x0 = (0, 0) and x′0 = (1, 1), with a sample of 5000 iterations.

for some m1 and m2 that approximately locate modes, and scale parameter τ > 0 (K is a nor-

malization constant). In figure 2 we present an illustration of the t-walk sample paths over quite

different choices of the above distribution, and also on a correlated bivariate normal distribution.

We present two quite extreme two dimensional examples. Figure 3(a) shows a mixture of two

rather contrasting bivariate normals, one flat, oval highly correlated mode and one peaked low

correlated, forming an objective function with two modes. Figure 3(b) shows a strongly correlated

hook shape objective function with thin edges and a thicker mid section where the mode is (see

figure 3 for more details).

Note that we have run the t-walk over seven quite different objective functions, varying radically
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Figure 3: Sample points for one component in the t-walk (a) mixture of bivariate normals,

low mode with weight 0.7, µ1 = 6, σ1 = 4, µ2 = 0, σ2 = 5, ρ = 0.8, high mode with weight

0.3, µ1 = −3, σ1 = 1, µ2 = 10, σ2 = 1, ρ = 0.1. We took 100,000 iterations with an accep-

tance rate of around 45%. (b) “Rosenbrok” (see Rosenbrok, 1960) density equal to π(x, y) =

C exp
[
−k
{
100(y − x2)2 + (1− x)2

}]
(for some normalizing constant C), with k = 1/20. We used

100,000 iterations. This is quite a difficult density to plot and we needed to chop off the two tips

of the hook so the corresponding algorithm in R could plot the contours correctly. In this case

we obtained an acceptance ratio of about 13% with 100,000 points, lower than all other examples

presented in this section.
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in scale, correlation, modes, etc. The t-walk performed well and more or less similarly in all cases.

Next we present a more complex example of dimension 15.

3.2 Higher dimension example

We study an example of a semiparametric age model for radiocarbon calibration in paleoecology.

This problem was studied in Blaauw and Christen (2005) using a picewise linear approach and here

we experiment using the t-walk with an age model with several parameters. It is not our intention

to justify nor establish the validity of this approach in paleoecology but only to demonstrate

the usefulness of the t-walk in an high dimension example. We have a series of radiocarbon

determinations yj ± σ; j = 1, 2, . . . ,m taken along a peat core at depths dk. A semiparametric

model is proposed to establish a relation between the (unknown) age of peat and depth, d, G(d, x) =

x1 +
∑i

j=2 xj∆c + xi+1(d − ci); where ci ≤ d < ci+1 and the ci’s are depths uniformly spaced

along the peat core with difference ∆c. The usual normal model is considered, yj | dj , x ∼

N(µ(G(dj , x)), σj), where µ(·) is the radiocarbon calibration curve, see Blaauw and Christen (2005)

for details. Additionally, a model is proposed for the (peat accumulation) rates xj = wxj−1 +(1−

w)zj , where w = xn and zj ∼ Gamma(α, β), with α and β known (representing the information

available on accumulation rates, see Blaauw and Christen, 2005).

A simple program (in C++) is used to calculate −logf(x|y1, y2, . . . , ym). The other input

required are the initial points for x and x′. For this we set w = 0.4 and w′ = 0.1 and xn−1 ∼

Gamma(α, β), x1 ∼ N(µ(G(d1, x)), σ1). This provides initial (“city park”) values for x and x′.

The data set use for the example is called “EngXV” with m = 56 determinations (see Blaauw,

Geel, Mauquoy and Plicht, 2004). We took n = 71 (70 parameters for the age-depth model plus

w) and ran 200,000 iterations of the t-walk (this took 2 minutes in a Mac G4 iBook machine).

Two sample age-depth models and the MAP estimator is presented in Figure 4(a) and a histogram

approximating the marginal distribution of w is presented in Figure 4(b).
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Figure 4: (a) MAP estimator (red) and two sample age-depth models for core EngXV. For each of

the m = 56 determinations a sample of 10 calendar ages were simulated and plotted (small dots).

(b) Histogram for the marginal posterior distribution of w.

4 COMPARISONS

Roberts and Rosenthal (2001) present a review of some optimal scaling for a random walk Metropo-

lis Hasting algorithm for some simple models. In terms of Integrated Autocorrelation Time (IAT),

the random walk Metropolis hasting most be tune to have an acceptance rate of 0.234, for the type

of models considered by them. In particular, they consider the objective π(x) =
∏d

j=1 Cjg(Cjxj),

where g is the standard Normal distribution, and in section 7.1 they take Cj = 1, model 1, C1 = 2

and Cj = 1; j = 2, 3, . . . , n, model 2 and C1 = 1 and Cj ∼ Exp(1); j = 2, 3, . . . , n, model 3. Also

we consider Cj = 10, model 0. We have already mentioned that a finely tuned MCMC for a partic-

ular objective function should be more of equally efficient that any generic method, including the

t-walk. But fine tuning a Metropilis Hastings MCMC is the whole issue of applying the method.

While very flexible and very general indeed, a M-H MCMC can be extremely ineffective and in

high dimensions very difficult to tune. This is the idea behind and motivation for adaptive or self

adjusting methods like the t-walk (see Roberts and Rosenthal, 2001, for more examples).

14



0 50 100 150 200

0
2

0
4

0
6

0
8

0
1

0
0

Dimension (n)

C
o

n
ve

rg
e

n
ce

 t
im

e
 (

IA
T

/n
)

Model 0 −
Model 1 −
Model 2 −
Model 3 −

Figure 5: Integrated Autocorrelation Times dived by the dimension, over various dimensions for

the t-walk, solid lines, and a random walk Metropolis Hastings, dashed lines. The models are taken

from Roberts and Rosenthal (2001), see text.

Roberts and Rosenthal (2001) consider the IAT divided by the dimension of the parameter space

as a means to compare convergence rates, or efficiency, among MCMC samples and compensate for

space dimension. We fine tune a random walk M-H for model 1 for n = 10 (to an acceptance rate

near 0.234) and use that same sampler in the rest of the examples. We also ran the t-walk in all

examples, using dimensions n = 2, 3, 5, 7, 10, 15, 20, 30, 50, 70, 100, 150, 200. The results are shown

in Figure 5. Note that in the case of the t-walk, for all models the IAT increases linearly with n

and thus IAT/n remains in most cases below 30. For the random walk M-H IAT/n is lower, as

expected, for n around 10 but soon it exploits making the chain extremely inefficient. The contrary

effect is seen for model 0. Moreover, it is also the case that IAT/n remains bounded by 30 for all

the examples presented in the previous sections, including the high dimension (n = 71) above. We

would like to stress the fact that the same algorithm was used in all examples, requiring no tuning

parameters besides the (log) of the objective function and two initial points in the sample space.
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5 DISCUSSION

The t-walk has unique performing characteristics, adapting nicely to radically different scales,

correlations, and across several dimensions with no tuning parameters. The very same sampler

was used in all the examples shown here considering dimensions from 2 to 200.

However, we have found an example in which extremely high correlations in a high-dimensional

problem lead to very slow mixing of the t-walk. Examples of posterior distributions with many

highly correlated parameters arise, for example, in the field of inverse problems such as conductivity

imaging. We intend to work on this problem to extend the applicability of this approach by

developing moves that depend on a few more than two points in state space. We also look to

develop a version of the t-walk that may cope with a mixture of discrete and continuous parameters.

We believe that the t-walk is already a useful improvement on existing attempts at creating

automatic, generic, self adjusting, MCMC’s. The current design results in a simple, mathemati-

cally tractable algorithm that lends itself to use as a black-box sampler, since only evaluation of

the objective function is needed; there being no need to calculate any conditional distributions,

etc. As presented in the numerical examples, we have evidence that the t-walk will perform sat-

isfactory with common densities (posterior distributions in common Bayesian statistical analyses)

of dimension up to perhaps 200 or more. For these problems the t-walk can be used as a black-box

simulation technique, either for exploratory analysis of the objective density at hand or for final

MCMC simulation. The t-walk is available in R (R Development Core Team, 2005) and C++ at

http://www.cimat.mx/∼jac/twalk/.

6 ACKNOWLEDGMENTS

Colin Fox was partially founded by the Department of Mathematics, University of Auckland (New

Zealand) and J Andrés Christen was partially founded by grant SEMARNAT-2004-C01-0007 (Mex-

ico).

16

http://www.cimat.mx/~jac/twalk/


References

[1] Bavencoff, F., Vanpeperstraete, J.M. and Le Cadre, J.P. (2006), ”Constrained bearings-

only target motion analysis via Markov chain Monte Carlo methods IEEE Transactions on

Aerospace and Electrical Systems, 42(4), 1240-1263.

[2] Blaauw, M., B. van Geel, D. Mauquoy, J. van der Plicht (2004). “Radiocarbon wiggle-match

dating of peat deposits: advantages and limitations”. Journal of Quaternary Science, 19,

177-181.

[3] Brockwell, A.E. and Kadane, J.B. (2005), “Identification of Regeneration Times in MCMC

Simulation, With Application to Adaptive Schemes”, Journal of Computational and Graph-

ical Statistics, 14(2), 436–458.

[4] Blaauw, M. and Christen, J.A. (2005), “Radiocarbon peat chronologies and environmental

change”, Applied Statistics, 54(4), 805-816.

[5] Eidsvik, J. and Tjelmeland, H. (2004), “On directional Metropolis-Hastings algorithms”,

Statistics and Computing, 16(1), 93–106.

[6] Emery, A. F., Valenti, E. and Bardot, D. (2007), ”Using Bayesian inference for parameter

estimation when the system response and experimental conditions are measured with error

and some variables are considered as nuisance variables, Measurement Science & Technology,

18(1), 19-29.

[7] Firmani, C., Avila-Reese, V., Ghisellini, G. and Ghirlanda, G. (2007), ”Long gamma-ray

burst prompt emission properties as a cosmological tool, Revista Mexicana de Astronomia y

Astrof́ısica, 43(1), 203-216.

[8] Gilks, W.R. Roberts, G.O. and George, E.I. (1994) “Adaptive direction sampling”, The

Statistician, 43, 179–189.

17



[9] Gilks, W.R. and Roberts, G.O. (1996), “Strategies for improving MCMC”, in: Markov Chain

Monte Carlo in Practice, Gilks, W.R., Richardson, S. and Spiegelhalter, D.J. eds. Chapman

and Hall: London, 89–114.

[10] Gilks, Roberts and Sahu (1998), “Adaptive Markov Chain Monte Carlo Through Regenera-

tion”, Journal of the American Statistical Association, 93, 1045–1054.

[11] Green, P.J. and Mira, A. (2001), “Delayed Rejection in Reversible Jump Metropolis–

Hastings”, Biometrika, 88, 1035-1053.

[12] Haario, H. Saksman, E. and Tamminen, J. (2001), “An adaptive Metropolis algorithm”,

Bernoulli, 7, 223-242.

[13] Jeffery, E. J., von Hippel, T., Jefferys, W. H., Winget, D. E., Stein, N. and DeGennaro, S.

(2007), ”New techniques to determine ages of open clusters using white dwarfs, Astrophysical

Journal, 658(1), 391-395.

[14] Liang, F. and Wong, W.H. (2001), “Real-parameter evolutionary Monte Carlo with applica-

tions to Bayesian mixture models”, Journal of the American Statistical Association, 96454,

653-666.

[15] MacKay, David J. C. (2003), “Information Theory, Inference, and Learning Algo-

rithms”,Cambridge University Press.

[16] R Development Core Team (2005), R: A language and environment for statistical computing,

R Foundation for Statistical Computing: Vienna.

[17] Robert, C.P. and Casella, G. (1999), Monte Carlo Statistical Methods, Springer Texts in

Statistics, Springer-Verlag: New York.

[18] Roberts, G. O. and Rosenthal, J. S. (2001), “Optimal scaling for various Metropolis-Hastings

algorithms”, Statistical Science, 16(4), 351-367.

[19] Rosenbrock, H.H. (1960), “An automatic method for finding the greatest or least value of a

function”, The Computer Journal, 3, 175-184.

18



[20] Symonds, J. P. R., Reavell, K.S.J., Olfert, J.S., Campbell, B.W. and Swift, S.J. (2007),

”Diesel soot mass calculation in real-time with a differential mobility spectrometer, Journal

of Aerosol Science, 38(1), 52-68.

[21] Warnes, G.R. (2000), The Normal Kernel Coupler: An adaptive Markov Chain Monte Carlo

method for efficiently sampling from multi-modal distributions, PhD Thesis: University of

Washington.

19


	INTRODUCTION
	THE T-WALK DESIGN
	Walk move
	Traverse move
	Hop and Blow moves
	Convergence
	Properties

	NUMERICAL EXAMPLES
	2-dimensional examples
	Higher dimension example

	COMPARISONS
	DISCUSSION
	ACKNOWLEDGMENTS



